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Handling Floating-point Exceptions in

Numeric Programs

JOHN R. HAUSER

University of California, Berkeley

There are a number of di�erent schemes for handling arithmetic exceptions that can be used

to improve the speed (or alternatively the reliability) of numeric code, sometimes substantially.

Which scheme is best for a particular exception depends on the context of the calculation in which
it occurs. Overow and underow are the most troublesome exceptions and correspondingly have

the largest set of options. Depending on the context, overow and underow exceptions may

be addressed either: (1) through a \brute force" re-evaluation with extended range, (2) by re-
evaluating using a technique known as scaling, (3) by substituting an in�nity or zero, or (4) in

the case of underow, with gradual underow. In the �rst two of these cases, the o�ending

computation is simply re-evaluated using a safer but slower method. Explicit exception handling
is used to avoid the extra cost of the safer method when it is not needed. The latter two cases

are cheaper, more automated schemes that ideally are built in as options within the computer

system. Other arithmetic exceptions can also be handled with methods that look similar to these.
For instance, for \division by zero" exceptions, the best response typically is to return an in�nity

value.

This paper examines these and some other techniques with an eye toward determining the
support programming languages and computer systems ought to provide for oating-point excep-

tion handling. It is argued that the cheapest short-term solution would be to give full support

to most of the required (as opposed to recommended) special features of the IEEE Standard for
Binary Floating-Point Arithmetic. An essential part of this support would include standardized

access from high-level languages to the exception ags de�ned by the standard. These ags have

existed in the hardware of most computer systems for several years, but cannot yet be utilized
by portable programs. Some possibilities outside the IEEE Standard are also considered, and at

least a couple of ideas on possible better-structured support within programming languages are

presented.

1 INTRODUCTION

Designers and implementors of all levels of the computer hierarchy|programming lan-
guages, systems, and hardware|are regularly asked to incorporate exception handling
features into their products; yet many have little familiarity with how these features might
actually be used. More than all others, arithmetic exceptions seem to be especially myste-
rious. People often ask whether there can be any reasonable response to an exception as
seemingly conclusive as, say, oating-point overow. The truth is, though, that a number

This work was supported in small part by the Defense Advanced Research Projects Agency (DOD)
under grant MDA972-92-J-1028, and by National Science Infrastructure Grants CDA-8722788 and

CDA-9401156.
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of di�erent techniques exist for handling arithmetic exceptions, depending on the context
in which the exception occurs. In fact, it is often both easier and cheaper to respond
to an exception after-the-fact than to prevent the exception from occurring in the �rst
place [Demmel and Li 1993; Hull et al. 1994]. Conversely, when exception handling is not
available, it is sometimes necessary to artfully evade exceptions, resulting in programs that
exhibit no exceptional behavior but waste time doing so [Parlett 1979; Brown 1981].

In recent years, processor manufacturers have become increasingly suspicious that arith-
metic exception handling is an unneeded nicety, of little value to their customers. Without
a doubt, the main concerns of heavy users of computer arithmetic are accuracy and speed.
If a poll were taken, probably few such users would express much interest in exception
handling. The handling of arithmetic exceptions is an issue primarily for the implementors
of functions such as complex division, or numeric libraries like LAPACK (Linear Algebra
Package). These routines are expected to be widely-applicable and so must avoid being
tripped up by exceptions that are simply an artifact of the way the calculation is performed
[Demmel and Li 1993; Hull et al. 1994]. The authors of such functions naturally form only
a small minority of the people writing numeric code, but the results of their work are
incorporated into the work of many others. Programmers who use numeric libraries today
are often paying for the lack of standardized, e�ective exception handling features without
even knowing it!

The IEEE Standard for Binary Floating-Point Arithmetic was carefully drafted to in-
clude a number of features for dealing with oating-point exceptions [ANSI 1985; Goldberg
1991]. Computer designs of the past decade have been nearly unanimous in adopting this
standard for their oating-point arithmetic, so a signi�cant level of support for exception
handling exists in hardware today. And yet, there is little evidence so far that much use
has been made of many of these special features, even by the people supposed here to have
good reason to! However, this disordered state is to be blamed mostly on the lack of stan-
dardized access to these features from high-level languages such as FORTRAN or C. When
high-level access is available at all, it generally varies from one manufacturer's machine to
another. Programmers of numeric libraries, on the other hand, usually have an interest in
having their code be portable to as wide a range of platforms as possible. Consequently,
they must avoid any device that would make their code machine-speci�c. Today there is a
danger that some of the features of the IEEE Standard will disappear from future systems
before they ever had a chance to be useful.

This paper attempts to get at the heart of the matter by examining the ways in which
di�erent arithmetic exceptions may be handled in numeric programs. The emphasis will
be on making numeric code run faster by eschewing convolutions whose only purpose is to
avoid exceptions. Reasoning is occasionally given for some of the more inscrutable features
of the IEEE Standard, along with ideas for improvement. Overall, the paper summarizes
the system support needed for numeric exception handling. It is hoped that the information
provided here will help inspire a more concerted and possibly creative e�ort at providing
such support in the future.

2 FLOATING-POINT REVIEW

Before considering the ways in which oating-point exceptions may arise, it will be worth-
while �rst to review the character of oating-point arithmetic. A more thorough review,
also touching briey on exception-handling issues, is provided by Goldberg [1991].
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In addition to zero, a oating-point format contains numbers of the form

�d0:d1d2d3 : : :dn�1 � be;

where b is the oating-point base, each di is a digit (0 � di < b), and n is the number of
digits. A oating-point number is normalized if d0 > 0. The base and number of digits
are generally constant for a particular format, and together these determine the precision
of the format. Ordinarily, the size of the exponent e is also limited, giving the oating-point
format a �nite range. The double-precision format of the IEEE Standard, for example,
has a base of 2 with 53 binary digits, and requires that numbers be normalized (usually)
and that �1022 � e � 1023. The range of this format covers numbers as large and small
as 10�307, and the precision is nearly 1 part in 1016.

Because of the �nite precision of oating-point numbers, oating-point arithmetic can
only approximate real arithmetic. Every oating-point number is a real number, but few
real numbers have oating-point equivalents. Consequently, oating-point operations (ad-
dition, etc.) are generally thought of as being composed of the corresponding real operation
followed by a rounding step which chooses a oating-point number to approximate the real
result. The symbols �, 	, 
 and � are used to distinguish the basic oating-point op-
erations from the real operations +, �, �, and �. The di�erence between the ideal real
result r of an operation and its oating-point approximation f is measured as the relative
error � = jf � rj�jrj. (This relative error is considered to be 0 when f = r = 0.) Put an-
other way, the rounded result can be said to be perturbed from the ideal result by a factor
of f=r = 1 + (f � r)=r = 1� �, where � is again the relative error. For example, for a
3-digit decimal (base 10) format, if 5.166666 is the ideal result and 5.17 the rounded result,

the relative error of the rounded result is
j5:17� 5:166666j

j5:166666j = 0:00064516. The returned

result 5.17 is equal to the ideal result 5.166666 times a perturbation factor of 1.00064516.
Of course, it is possible for the real result of an operation to be so large or so small that

it exceeds the available oating-point range. This situation is known as a range violation.
When the magnitude is too large, the result is said to overow the available range. When
it is too small, an underow occurs.

In the absence of overow or underow, each operation has, as a practical matter, a
maximum relative error which bounds how bad a oating-point result can be in relation to
the ideal result for that operation. The maximum relative error is the worst relative error
the operation exhibits for any set of operands. For instance, if the maximum relative error
for the addition operation is known to be ��, then for any x and y one can guarantee that
x� y = (x+ y) � � for some perturbation factor � satisfying 1� �� � � � 1 + ��.

These days it is common for the results of basic oating-point operations to be exactly
rounded, which means that the result returned is always the oating-point number closest
to the ideal real result. Clearly, this is the best that a oating-point arithmetic could be
expected to do. With exact rounding, the maximum relative error is the same for all of the
basic operations, namely � = 1=(2bn�1), where b is the base and n is the number of digits
in the oating-point format.

In this paper, oating-point arithmetic will ordinarily be assumed to be normalized
binary (base 2) with exact rounding for the basic operations|the same as required by the
IEEE Standard. Given n bits of precision, the maximum relative error � is thus 1=2n. The
conclusions that follow should apply generally to other formats as well, but the details
might di�er. In addition, the maximum and minimum positive oating-point numbers
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within range will be written as 
 and !, respectively.

3 RANGE VIOLATIONS

The radius of a proton is 1:2� 10�15 m. The distance from Earth to the farthest quasar
is estimated as 1:5� 1026 m. The mass of an electron is 9:1� 10�31 kg. The mass of the
Milky Way Galaxy is 2:2� 1041 kg. The time it takes for a neutron to pass through the
nucleus of an atom is 2� 10�23 s. The age of the known universe is hypothesized to be
less than 4� 1017 s.

The ratio between the largest and the smallest of these numbers is 2:4� 1071. Given
these realities, the IEEE Standard double-precision range of 10�307 might seem ample
enough to eliminate any threat of overow or underow. The same intuition, though, might
also have trouble divining a use for complex or imaginary numbers. After all, imaginary
numbers have no manifestation in the material world. No tangible quantity is measured
in complex units. Yet complex numbers appear as intermediates in many scienti�c and
engineering computations, as a consequence of the mathematics applied in those computa-
tions. In much the same way, numbers of extreme size can appear as intermediates in the
calculation of practical, more terrestrial quantities.

For example: Smith et al. [1981] have addressed the problem of computing speci�c values
of \normalized Legendre polynomials," used in the calculation of angular momentum in
quantum mechanics and elsewhere. The details of this problem are of little concern here,
but a brief summary can be given. A particular normalized Legendre polynomial depends
on two nonnegative integer parameters � and � and is written �P�

� . To accurately calculate
�P�
� (x) given speci�c values of �, �, and x, with � < �, Smith et al. advocate starting with

the values

�P �+1
� (x) = 0

and

�P �
� (x) =

s
1

2

3 � 5 � � � (2� + 1)

2 � 4 � � � (2�) (1 � x2)�=2

and then recursing using the formula

�P��1
� (x) =

2�xp
(1 � x2)(� + �)(� � �+ 1)

�P�
� (x)�

s
(� � �)(� + � + 1)

(� + �)(� � � + 1)
�P�+1
� (x)

until the desired � is reached.
According to Smith et al., this strategy works well for small � and most x. However, if

� is more than a few decimal digits and x is close to �1, the technique is hampered by the
fact that the starting value �P �

� is extremely small, even though the desired value �P�
� may be

well within range. For instance, �P 10000
10000 (�0:707) is approximately 0:5318� 10�1504, which

is not representable in most double-precision formats. For comparison, �P 0
10000(�0:707) �

0:8766� 10334, and the values for 0 < � < 10000 fall between these extremes [Smith et al.
1981].

Because certain combinations of problems and computational methods give rise to ex-
ceptionally large or small numbers, the implementors of widely-used library routines have
at times invested considerable e�ort toward making their code resilient against possible
overows and underows [Demmel and Li 1993; Hull et al. 1994]. One important library
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for scienti�c computation is LAPACK, a package of expertly-crafted subroutines for per-
forming linear algebra operations. (LAPACK subsumes the older LINPACK and EISPACK
libraries.) The possibility of range violations in intermediate computations has had signi�-
cant impact on the coding of subroutines in LAPACK for �nding eigenvalues of symmetric
tridiagonal matrices and singular values of bidiagonal matrices [Assadullah et al. 1992].
Avoiding range violations in these routines requires extra work at execution time, which
hurts the performance of these routines; yet without such preventive measures, disastrous
overow and underow would occur for many perfectly reasonable matrices.

Probably the single most common example given to demonstrate spurious range viola-
tions is the calculation of the 2-norm of a vector. For a vector with elements xi, 1 � i � N ,
its 2-norm (or simply \norm") is qPN

i=1 x
2
i :

A straightforward coding of this expression is

sum := 0;

for i := 1 to N do

sum := sum + x[i]*x[i];

end for;

norm := sqrt(sum);

However, for many slightly large or small vectors, this code will fail due to overow or
underow in evaluating one or more of the x2i , even though the norm itself is representable
as an unexceptional oating-point number. In fact, correctly evaluating a vector norm
without danger from overow or underow and with only a single pass over the vector
elements has been shown by Blue [1978] to be a nontrivial problem.

3.1 Extended range

The obvious remedy to possible overow and underow is to evaluate potentially large or
small intermediate quantities with greater range. When no format with enough range is
supported by the machine hardware, a wider range must be simulated in some way. In
principle, this is not di�cult: An extended-range oating-point format can be constructed
by pairing a machine integer i with an ordinary oating-point number f and treating the
pair as representing the number

f � Bi;

where B is a predetermined constant that is a power of the oating-point base. For instance,
if f is a standard IEEE-format double-precision number, i is a 32-bit twos-complement
integer, and B = 2256 � 1:1579 � 1077, the range of representable numbers is greater
than 10�165492990270. Subroutines like those in Figure 1 can be used to perform the basic
arithmetic operations on this wide-range format. This is essentially the technique employed
by Smith et al. [1981] for calculating the normalized Legendre polynomials discussed above.

The problem with software-implemented arithmetic is of course its slow speed. Ideally,
processors would provide hardware assistance for performing extended-range operations.
For instance, given a conveniently �xed EXPBASE, a processor could support the adjust

function directly in one or at most two machine instructions.1 Extended-range addition

1For many processors, this feature would be facilitated by keeping the exp values in oating-point
registers.
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subroutine adjust(x : bigFloat) : bigFloat =

declare

z : bigFloat;

begin

z := x;

if abs(z.sig) > EXPBASE then

z.exp := z.exp + 1;

z.sig := z.sig/EXPBASE;

elseif abs(z.sig) < 1/EXPBASE then

z.exp := z.exp - 1;

z.sig := z.sig*EXPBASE;

end if;

return z;

end;

subroutine add(x,y : bigFloat) : bigFloat =

declare

sum : bigFloat;

begin

if x.exp > y.exp then

sum.exp := x.exp;

sum.sig := y.sig;

Divide sum.sig by 2x:exp�y:exp;
sum.sig := sum.sig + x.sig;

else

: : : (the same with x and y reversed)
end if;

return adjust(sum);

end;

subroutine mul(x,y : bigFloat) : bigFloat =

declare

product : bigFloat;

begin

product.exp := x.exp + y.exp;

product.sig := x.sig*y.sig;

return adjust(product);

end;

Figure 1: Subroutines for addition and multiplication of a software-based extended-range
format. Here a bigFloat variable is comprised of two �elds, a oating-point sig (signi�-
cand) and an integer exp (extended exponent), representing the number sig�EXPBASEexp.
Subtraction and division subroutines would be very similar to their addition and multipli-
cation counterparts shown here.
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would also be aided by the ability to perform oating-point multiplications and divisions
by 2a for integer values of a. Probably the most common calculations requiring extended
range, though, are large products|that is, calculations of the formQN

i=1 xi

for large N . Even if the product itself is known to be unexceptional, the likelihood that an
overow or underow will occur while the product is being accumulated increases with the
number of factors. Since extra range is needed only for the running product, the overhead
of extended range can be kept relatively small, as follows:

product.exp := 0;

product.sig := 1.0;

for i := 1 to N do

product.sig := product.sig*x[i];

product := adjust(product);

end for;

Because the loop accumulating the product is so short, it is easy to see that a hardware
implementation of adjust could have signi�cant impact in this case.

Although hardware assistance could help speed up emulated extended range, such assis-
tance rarely exists today. Without support from hardware, extended range is best avoided
unless truly needed. Hence, rather than perform all calculations in extended range from the
outset, it is usually better to attempt a calculation using the hardware-supported oating-
point format �rst, and then to switch to the extended-range format only in the event that
the hardware format is inadequate. Algorithmically, this optimization appears as

Attempt the following:
Perform the calculation using the hardware arithmetic;

If overow or underow occurs:
Perform the same calculation using the emulated, extended-range arithmetic;

Typically, the hardware-supported format will su�ce for most cases, and only the unusual
(but still valid) cases will require the slower execution.

A similar trick can also be used to speed up the extended-range subroutines themselves
by postponing calls to adjust until absolutely necessary. The mul subroutine, for example,
could be rewritten as in Figure 2 to take advantage of overow and underow exceptions
to indicate when exponent adjustments are needed. Whether this change results in a time
savings will depend on the frequency with which adjustments must be made. In calculating
a large product of ordinary oating-point numbers, one can generally expect adjustments to
be rare. In fact, the code shown in Figure 3 for accumulating a large product with deferred
adjustments should ordinarily be fast enough that a separate, �rst execution attempt using
only the hardware format is unnecessary.

Unfortunately, these strategies of putting o� work until proved necessary by a range
violation are prohibited on any system that forces termination of a program on any over-
ow. In order for these schemes to work, a program must be able to detect when range
violations have occurred, and be allowed to perform an alternate computation when they
have. Moreover, monitoring for the occurrence of overow or underow must not slow down
the primary case signi�cantly, or any advantage may be lost. Usually, range violations are
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subroutine mul(x,y : bigFloat) : bigFloat =

declare

product : bigFloat;

begin

Attempt the following:
product.exp := x.exp + y.exp;

product.sig := x.sig*y.sig;

If overow or underow occurs:
product := mul(adjust(x),adjust(y)); (i.e., adjust arguments and try again)

return product;

end;

Figure 2: The extended-range subroutine mul, rewritten using exception handling to defer
calling adjust as much as possible.

product.exp := 0;

product.sig := 1.0;

for i := 1 to N do

Attempt the following:
temp := product.sig*x[i];

If overow occurs:
while abs(product.sig) > 1 do

product.exp := product.exp + 1;

product.sig := product.sig/EXPBASE;

end while;

temp := product.sig*x[i];

Else if underow occurs:
while abs(product.sig) < 1 do

product.exp := product.exp - 1;

product.sig := product.sig*EXPBASE;

end while;

temp := product.sig*x[i];

product.sig := temp;

end for;

Figure 3: Code to calculate
QN

i=1 xi using a running product with extended range. Excep-
tion handling is used to defer adjustments to product.exp as much as possible. Equivalents
of the adjust operations have been expanded inline for improved e�ciency.
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conveniently detected by the arithmetic hardware, but on some systems this information
can be accessed only at some cost.

In principle, several programming languages provide a means for realizing these opti-
mizations at a high level with a \termination" style of exception handling. Ada is the best
known such language [U. S. Dept. of Defense 1981; ANSI 1983]; its exception mechanism
is based on the construct

begin

statements

exception

exception | : : : => statements

: : :

end;

This construct neatly matches the optimizations above as follows:

begin

Perform the calculation using the hardware arithmetic;
exception

OVERFLOW ERROR | UNDERFLOW ERROR =>

Perform the same calculation using the emulated, extended-range arithmetic;
end;

Actually, it would be fairer to say that the construct above would neatly match the
desired optimizations, if the OVERFLOW ERROR and UNDERFLOW ERROR symbols were really
part of Ada. Instead of these, Ada de�nes a broader NUMERIC ERROR class of exceptions,
covering overow, division by zero, and arithmetic domain violations in general, but not
including underow [ANSI 1983]. Underows cannot be caught as exceptions within Ada
at all. Of course, Ada is not alone in this regard: On practically all systems, underows
are substituted with zero (or an IEEE Standard subnormal number) without causing any
exception trap. Although this response to underows is often acceptable, it does not do for,
say, a large product, since the running product can underow when the true result would
be quite reasonable or even extremely large. In order for a termination-style exception
mechanism to be useful for extended-range emulation, the programmer must be able to
specify when underows should cause a trap rather than be substituted with zero or some
other small value. Portable means for distinguishing these cases do not exist today.

For the applications above, it is not critical that the system be able to stop the �rst
attempted computation very precisely when a range violation occurs. In the extreme, the
computation being attempted could well be allowed to run to completion, if that makes
sense, before the occurrence of any range violations is even considered. (Of course, if a
range violation does occur, any results calculated in the �rst attempt would necessarily be
suspect.) So long as care is taken to avoid wild or deadlocked behavior, the occurrence of
overow or underow can simply be noted for the program to observe upon completion of
the �rst attempt.

With this approach in mind, the IEEE Standard was de�ned so that, by default, over-
ows and underows do nothing more than cause a ag to be set to indicate that the given
range violation has occurred. Computation continues with a default value prescribed by
the standard. The default result for underow is a tiny value, often zero, that roughly
approximates the desired result. The default result for overow is an in�nity value. These
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default values are unimportant to the current discussion, but they will be examined more
closely in subsequent sections.

To give programs access to the exception ags, a system will typically de�ne a getflag
function that takes an indicator of which ag to access and returns that ag's value. For
instance, getflag(EXC OVERFLOW) might be used to obtain the setting of the overow
exception ag. (The symbol EXC OVERFLOW is assumed to be a system-de�ned constant.)
A corresponding setflag function takes a ag indicator and a new value for the speci�ed
ag. Preferably, setflag also returns the previous ag value, making an exchange of values
possible in a single operation. In practice, getflag and setflag are often de�ned to act
on multiple ags in parallel, with each ag corresponding to a di�erent bit of a machine
integer. However, this feature will not be considered here.

With IEEE Standard exception ags, the optimizations above appear as

oldOverflowFlag := setflag(EXC OVERFLOW,FALSE);

oldUnderflowFlag := setflag(EXC UNDERFLOW,FALSE);

Perform the calculation using the hardware arithmetic;
overflow := setflag(EXC OVERFLOW,oldOverflowFlag);

underflow := setflag(EXC UNDERFLOW,oldUnderflowFlag);

if ( overflow or underflow ) then

Perform the same calculation using the emulated, extended-range arithmetic;
end if;

The previous settings of the ags are preserved during the �rst attempt at the calculation so
that the ags will ordinarily show what exceptions occurred that were never specially han-
dled by the program. The programmer is responsible for ensuring that the �rst attempt will
eventually terminate without any damaging e�ects should overow or underow actually
occur. From a high-level perspective, manipulating ags is a primitive albeit serviceable
solution to the problem. Nevertheless, programs written to use the IEEE Standard excep-
tion ags tend not to be portable because the getflag and setflag functions have yet to
be standardized across di�erent systems.

3.2 Scaling

Another technique used to get the e�ect of wider range is scaling. With scaling, the
input to a computation is �rst examined and then pre-adjusted so that all intermediate
calculations will be within range. Afterwords, the �nal result is adjusted back so that it cor-
responds with the original input. Scaling can be used with problems that are homogeneous
or have a similar relationship between inputs and outputs. A function is homogeneous
if f(kx1; kx2; : : :) = kn � f(x1; x2; : : :) for some n. Another relationship that submits to
scaling is f(kx1; kx2; : : :) = f(x1; x2; : : :) + k.

The vector norm problem is homogeneous because norm(kx) = k � norm(x). With a
proper choice for k, norm(x) can be calculated as k�1norm(kx) without danger of overow
and without underow seriously a�ecting the result. Figure 4 gives code to evaluate the
norm of a vector using scaling. The code �rst determines what scaling is appropriate, and
then executes one of three loops corresponding to three di�erent scaling factors. (One
of the scaling factors is 1, which is equivalent to not scaling at all.) Compare with the
straightforward implementation given earlier.

Scaling is the principle method by which linear algebra packages like LAPACK avoid
range violations [Assadullah et al. 1992; Demmel and Li 1993]. It is also used, for example,
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xMax := 0;

for i := 1 to N do

if xMax < abs(x[i]) then

xMax := abs(x[i]);

end if;

end for;

sum := 0;

if xMax > LARGE then

for i := 1 to N do

xi := x[i]*SMALLSCALE;

sum := sum + xi*xi;

end for;

norm := sqrt(sum)/SMALLSCALE;

elseif xMax < SMALL then

for i := 1 to N do

xi := x[i]*LARGESCALE;

sum := sum + xi*xi;

end for;

norm := sqrt(sum)/LARGESCALE;

else

for i := 1 to N do

sum := sum + x[i]*x[i];

end for;

norm := sqrt(sum);

end if;

Figure 4: Code to calculate the norm of a vector using scaling, and without exception
handling. Underows in the accumulation of sum are harmless assuming a small number
like zero is substituted for the underowed value. Both LARGE and LARGESCALE must be
close to

p

, with LARGE <

p

 < LARGESCALE. (Recall that 
 and ! are the largest

and smallest positive numbers within range, respectively.) Similarly, SMALLSCALE must be
slightly smaller than

p
!, and SMALL must be slightly larger than bn

p
!, where b is the

oating-point base and n is the number of digits. To protect accuracy, SMALLSCALE and
LARGESCALE need to be powers of the oating-point radix b. Note that the loop at the
top to �nd the maximum element must be executed every time, even when scaling is not
needed.
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Attempt the following:
sum := 0;

for i := 1 to N do

sum := sum + x[i]*x[i];

end for;

norm := sqrt(sum);

if norm < N*SMALL then

sum := 0;

for i := 1 to N do

xi := x[i]*LARGESCALE;

sum := sum + xi*xi;

end for;

norm := sqrt(sum)/LARGESCALE;

end if;

If overow occurs:
sum := 0;

for i := 1 to N do

xi := x[i]*SMALLSCALE;

sum := sum + xi*xi;

end for;

norm := sqrt(sum)/SMALLSCALE;

Figure 5: Code to do the same thing as
Figure 4 but starting with the straightfor-
ward calculation and then responding to any
overows that occur. Underows are again
assumed to be substituted with some small
number, possibly zero. If the result of the
�rst attempt is too small, underow might
have been a problem, and the norm is recal-
culated.

by Hull et al. [1994] to circumvent range violations in the evaluation of complex elementary
functions such as complex sine and complex square root.

In the vector norm example in Figure 4, time must be spent in choosing an appropriate
scaling factor, and this is true even in the likely case that no scaling is needed. For
many of the situations involving scaling in LAPACK|as well as in the older LINPACK
and EISPACK|signi�cant time is spent determining whether scaling is actually necessary
[Demmel and Li 1993]. As with emulated extended range, it is often better to attempt
a calculation �rst without scaling, and then to resort to scaling only when it is proved
necessary by overow or underow. Figure 5 shows how the vector norm calculation can be
rewritten to use this technique. By applying a similar optimization to an actual LAPACK
routine for solving triangular systems of equations, Demmel and Li have obtained speedups
ranging from 43% up to as much as a factor of four on real machines!

Obviously, this trick is in essence identical to the one used with extended range above:

Attempt the following:
Perform the calculation using the hardware arithmetic;

If overow or underow occurs:
Perform the same calculation with scaling;

Hence, all of the same implementation concerns discussed in the previous section apply.
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3.3 Substitution

Re-evaluating with extended range or scaling is not always the cheapest solution to range
violations. If x� y overows in evaluating

3 +
1

x+ y
;

then the 1=(x+ y) term is plainly irrelevant; the result would round to 3 even if evaluated
with in�nite range.2 In this expression, if x � y overows it is su�cient to substitute a
large number for the unrepresentable result and continue. The same is true if, say, x 
 y

overows in evaluating arctan(xy). Extended range would simply be wasted e�ort in either
of these cases.

In general, consider a calculation that evaluates some expression F , where F contains a
subexpression G, so that F = f(G) for an appropriately-de�ned function f . If G evaluates
to a positive number whose value cannot be represented because of overow, it may be
possible to evaluate f(�) in place of f(G) for some value � if

f(z) � f(�) for all z � 
.

Likewise, if G is negative, it may be possible to substitute �� for G if

f(z) � f(��) for all z � �
.
For the example above, it is easy to see that, for all z � 
,

3 +
1

z
� 3 +

1

�
� 3

for any su�ciently large �.
In making a substitution, care must be taken to ensure that any subsequent range

violations in evaluating f(�) (or f(��)) will be properly dealt with [Sterbenz 1974]. For
instance, if x
 x (i.e., x2) overows in evaluating

1 +
p
9x2 + 1

1 +
p
x2 + 1

;

then, mathematically, 
 (the largest oating-point number) could be substituted, since

1 +
p
9z + 1

1 +
p
z + 1

� 1 +
p
9
 + 1

1 +
p

 + 1

� 3

for all z � 
. However, making this substitution results in 9

 subsequently overowing
again, and this time there is no value that can be substituted reliably. General speaking,
there is little point in making a substitution if a subsequent part of the calculation can
also experience a range violation for which there is no reliable substitute. If x
x does not
overow in the expression above, but 9
 (x 
 x) does, there is no oating-point value �
for which

1 +
p
z + 1

1 +
p
x2 + 1

� 1 +
p
�+ 1

1 +
p
x2 + 1

2Actually, a oating-point format could be de�ned with so little range that this is not true. Su�ce it
to say no arithmetic in common use displays such perversity.
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for all x and all z � 
.
Some older architectures provide an option in which �
 is substituted for all overowed

results [Sterbenz 1974]. IBM mainframes have long had an option within FORTRAN for
doing this, for instance. As a rule, if any value � can be successfully substituted for G
in f(G), then 
 can also be substituted, since if f(z) � f(�) for all z � 
 as stipulated
above, then it must be that f(
) � f(�), and so f(z) � f(
) for all z � 
. Hence, if any
value is a good substitute, 
 tends also to be a good substitute. Of course, that does not
mean that substituting �
 is going to be successful for all overows. Rather, one would
like to be able to specify where in a program substitution of �
 is acceptable so that a
trap can be avoided in just those cases.

Instead of using 
 many machines have an in�nity value, 1, which is substituted by
default on overow [Sterbenz 1974; ANSI 1985; Goldberg 1991]. Just as with 
, if there
exists some value that is a good substitute for a particular overowed result, then 1 tends
also to be a good substitute. Even so, 
 and1 are not completely interchangeable as sub-
stitutes for overowed values. There are cases in which 
 can be successfully substituted,
while substituting 1 ultimately leads to a spurious exception. And 
 is clearly superior
in this respect: The relative error of substituting 1 is always in�nite, whereas the relative
error of substituting 
|although potentially bad|is at least �nite!

Nevertheless, when substitutions are performed by default, 1 is a slightly safer sub-
stitute than 
, simply because, if the substitution is not a good idea, 1 is less likely to
disappear in subsequent computation than is 
. Additions, subtractions, multiplications,
and many other operations, when applied to in�nite operands, either give in�nite results
or signal an invalid operation exception (for instance, 1� 0). Thus when substitution is
misapplied,1 has a greater chance than 
 of either visibly propagating through the cal-
culation or causing an exception trap. (The arithmetic of 1 is discussed in greater depth
in Section 4.) Note that there is no strict guarantee that this will happen [Brown 1981;
Lynch and Swartzlander 1992]. Simply,1 is more likely to be noticed than 
.

The IEEE Standard requires that �1 be substituted on overow, but it mitigates
the trouble this substitution may cause by raising an overow exception ag that can
be tested by the program. If substitution of 1 is not appropriate, the overow ag can
be used to trigger an alternate action within the program. When 1 is an acceptable
substitute, nothing special need be done|although, ideally, the program would ensure
that the overow ag is not raised in this case as follows:

oldOverflowFlag := getflag(EXC OVERFLOW);

Perform calculation in which overows may be safely substituted with �1;

setflag(EXC OVERFLOW,oldOverflowFlag);

This contrivance maintains the convention that exception ags reect only those exceptions
raised that may not have been safely handled.

Substitution is more commonly applied to underows than overows, although the
situation with underows is actually more complex. In principle, a condition similar to the
one for overow applies: Given an expression F = f(G), if G evaluates to a positive number
whose value cannot be represented because of underow, then � may be substituted for G
if

f(z) � f(�) for all 0 < z � !.

Similarly for negative underows. For example, if x
 y underows (positive or negative)
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in evaluating the expression
3 + xy;

then zero or some other small number can be safely substituted for the underowed product.
Problems arise with the more general form

u+G

for some expression G. If the evaluation of G underows, then whether or not zero can be
substituted depends on the magnitude of u. If u is zero or is otherwise an extremely small
number, the underowed value of G is not necessarily insigni�cant to the computation. On
the other hand, if u could be any oating-point number with equal likelihood, chances are
good that substituting zero is perfectly safe, because most u's would be large enough to
overwhelm any underowed term. Thus arises the underow dilemma:

If all underows are signalled as exceptional, most such signals will be false alarms
because the underows would have been absorbed in subsequent additions anyway.
Yet any unsignalled underow has the potential to introduce devastating inaccuracies
in a calculation.

Sterbenz [1974] illustrates how this dilemma can frustrate e�orts to keep underow under
control.

It has already been observed that e�cient emulation of extended range can depend on
underow exceptions being signalled. One would not want underows to be silently replaced
by zeros when evaluating a large product,

QN
i=1 xi. Conversely, the codes in Figures 4 and 5

for evaluating the norm of a vector with scaling rely on zero (or some other small value)
being substituted on underow. As with overow, the choice of a zero-substitution policy
ought to be made carefully, based on the circumstances of the calculation [Brown 1981].

Substitution is most convenient when it is supported by the underlying system. The
most likely substitutes for overow are �
 and 1; while for underow, the corresponding
candidates are zero and �!. Substitution of zero on underow is commonly considered the
ideal behavior; and the IEEE Standard requires that �1 be substituted on overow. The
other options are less prevalent. Few systems allow a programmer to specify where in a
program substitution is appropriate and what value to substitute. The IEEE Standard has
an inexible substitution policy, but the exception ags provide at least a primitive means
of correcting unwanted substitutions. As noted earlier, though, access to these ags has
yet to be standardized across di�erent systems, so portable programs taking advantage of
this feature cannot yet be realized.

3.4 Gradual underow

Rather than simply substitute zero on underow, the IEEE Standard employs a scheme
called gradual underow intended to increase the chances that underow will be innocuous
if it occurs. Figures 6 and 7 illustrate the concept for binary oating-point [Coonen 1981]. A
special unnormalized format is added to the bottom of the oating-point range, and results
that fall below the underow threshold ! are rounded to the closest representable number in
this format. For very small underowed results, the closest representable number will in fact
be zero, which is just a special instance of the unnormalized format. (0:00000000� 2�126 =
0.) Underowed quantities greater than 2�! are rounded to some number of bits less than
the ordinary precision, where the number of bits is determined by the size of the underowed
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: : :

1:xxxxxxxx� 2�122

1:xxxxxxxx� 2�123

1:xxxxxxxx� 2�124

1:xxxxxxxx� 2�125

! ! 1:xxxxxxxx� 2�126

0:xxxxxxxx� 2�126

Figure 6: Gradual underow for a binary
oating-point format with 9 bits of precision
and with the same range as IEEE single-
precision. In the �gure, numbers with di�er-
ent exponents are aligned according to the
location of their true binary points; an `x'
represents either a `0' or `1' bit. Ordinarily,
numbers within range must be normalized,
so the leading `1' is redundant and thus not
actually stored. To support gradual under-
ow, a special encoding allows numbers with
the smallest exponent (�126) not to be nor-
malized.

: : :

1:xxxxxxxx� 2�122

1:xxxxxxxx� 2�123

1:xxxxxxxx� 2�124

1:xxxxxxxx� 2�125

! ! 1:xxxxxxxx� 2�126

1:xxxxxxx� 2�127

1:xxxxxx� 2�128

1:xxxxx� 2�129

1:xxxx� 2�130

1:xxx� 2�131

1:xx� 2�132

1:x� 2�133

2�! ! 1:� 2�134

Figure 7: Another way of looking at gradual
underow. For small numbers out of range,
precision tapers o� until none remains. Re-
sults smaller than 2�135 are ushed to zero.

value. The smaller the value, the fewer bits of precision are available. The normalized
oating-point numbers are often called normal numbers in this scheme, to distinguish
them from the denormalized or subnormal numbers of the special unnormalized format.

The common policy of ushing all underows to zero leads to an abrupt loss of all
precision for underowed values. When subnormal numbers are added to the arithmetic,
loss of precision from underow is clearly more gradual. Accuracy has been said to \degrade
smoothly" as values move from the underow threshold ! down to zero. Nevertheless, this
in itself is a poor argument for gradual underow, since there is no a priori reason to
believe that a largely inaccurate result is to be preferred over a grossly inaccurate one. If
anything, a truly impossible result may be easier to recognize than one that is plausible
but still incorrect!

Yet gradual underow is not always inaccurate, as reected in the following theorem:

Theorem 1 If x and y are oating-point numbers, and if x�y underows to a subnormal
number, then x� y = x+ y exactly.

In other words, when a subnormal number is the result of an addition or subtraction,
it never requires rounding, despite the reduced precision of the subnormal format. (For
subtraction, note that x	 y = x� (�y).) Hence the result is not inaccurate at all|it
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could not be more accurate, in fact! A proof of this theorem (and all subsequent theorems)
is given in an appendix. As an informal argument, consider that in order for rounding to
be necessary, there must be something to round o�; that is, there must be at least one
nonzero bit beyond the rounding point. Such a bit would have to come from one of the
operands; yet Figure 7 suggests that there can be no such operand. The skeptical reader
should attempt to construct a counterexample.

By Theorem 1, underows in additions and subtractions are entirely benign when grad-
ual underow is employed. This fact allows assertions such as the following to be made:

Theorem 2 If x and y are any oating-point numbers with 1

2
� x=y � 2, then x	y = x�y

exactly.

Theorem 2 states that if x and y are close enough to one another, their di�erence will
be computed exactly, without rounding. When underow is not gradual, this theorem
is true only if x 	 y does not underow. Laws such as Theorem 2 make it possible for
certain critical algorithms to be more compact, and hence more e�cient. A rule that must
be quali�ed with \unless underow occurs" is of limited value when underow is a real
possibility. Theorem 1 guarantees that at least a few useful identities such as this one will
not be undermined by the possibility of underow [Kahan 1980; Coonen 1981; Demmel
1984].

Addition and subtraction are of course not the only oating-point operations, and
gradual underow does not eliminate all problems with underow. Although it is not
possible to make as clean a statement as Theorem 1 for other oating-point operations,
some useful facts can still be proved, such as the following:

Theorem 3 If u, x, and y are oating-point numbers, and if u is normal (nonzero, non-
subnormal) and any underows are gradual, then

u� (x
 y) = (u+ (xy � �)) � �

with
1� 2�

1� �
� � � 1

1� �
and 1� 3

2
� < � <

1

1� 3

2
�
.

This theorem gives bounds on the apparent error involved in evaluating the expression
u+ xy. The rounding of the multiplication x
 y introduces an error perturbation fac-
tor �, and the rounding of the subsequent addition introduces another perturbation fac-
tor �. Recall that � is the maximum relative error due to ordinary rounding. The ratio
(1� 2�)=(1� �) can be rewritten as 1� �� �2 � �3 � � � � which is only a shave less than
1� �; and likewise, 1=(1� �) and 1=

�
1� 3

2
�
�
approach 1 + � and 1 + 3

2
�, respectively. If

underow could not occur for x
 y, the bounds on � and � could each be strengthened to a
single rounding error: 1� � � � � 1 + �, and 1� � � � � 1 + �. Gradual underow has the
apparent e�ect of weakening these bounds slightly. On the other hand, when underows
are ushed to zero, then even without any cancellation the result can be o� by as much as
a factor of 2.

This last theorem illustrates how, for certain calculations, gradual underow has only
slightly worse impact on accuracy than ordinary rounding. For instance, using this theorem
it is easy to see that if all of the coe�cients of a polynomial anxn+an�1x

n�1+� � �+a1x+a0
are normal, and if the polynomial is evaluated according to Horner's rule,

(� � � ( (anx+ an�1)x+ an�2)x+ � � � a1)x+ a0;
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then even if underow occurs the polynomial will be evaluated almost as accurately as it
would with extended range (assuming overow does not occur). In similar fashion, gradual
underow can be shown to be no worse than rounding for a signi�cant class of algorithms,
including algorithms for

� �nding the roots of a polynomial,

� performing Gaussian elimination,

� determining a Cholesky decomposition,

� iteratively re�ning a solution to a set of linear equations,

� computing the eigenvalues of symmetric tridiagonal matrices,

� performing numerical quadrature, and

� accelerating the convergence of a sequence.

An analysis of each of these is catalogued by Demmel [1984]; some additional details can
be found in another paper by Demmel [1981]. Other examples are given by Kahan and
Palmer [1979] and Coonen [1981]. It should be noted that many times this behavior is
dependent on a certain set of the inputs or results being normal, although typically this
condition is known to be satis�ed in advance. When it is not certain to be true, verifying
the condition involves categorizing certain inputs as either normal or subnormal.

Gradual underow does not render underow harmless in all situations. An earlier draft
of the IEEE Standard included a \warning" mode to provide some security against loss of
precision [Coonen et al. 1979; Coonen 1980, 1981; Feldman 1981; IEEE 1981]. However,
the proposal was rather complex, and the protection provided would have been incomplete
[Fraley and Walther 1979]. Just as with zero-substitution, the appropriateness of gradual
underow can only really be determined within the context of the calculation.

Gradual underow is nearly inconceivable without system support. First, an encoding
for the subnormal numbers must exist within the available oating-point format. Then,
either the arithmetic hardware must implement gradual underow directly, or the processor
must trap on underows and on subnormal inputs so that arithmetic with subnormal
numbers can be emulated by the system software. Attempting to emulate gradual underow
entirely at a high level is futile, due to the overhead involved.

Augmenting oating-point hardware to deal directly with subnormal numbers requires
signi�cant circuitry, and can slightly degrade the speed of operations on even normal
oating-point numbers. Consequently, trapping has been the traditional means of sup-
porting gradual underow, though the time required to take the trap quickly adds up if
many subnormal numbers occur. On the other hand, as processors become more complex|
for instance, issuing multiple operations in a single cycle, and retiring operations out-of-
order|the trapping hardware itself becomes more costly to implement, and can itself add
to the time needed to perform operations on ordinary oating-point numbers [Ramamoor-
thy and Li 1977; Hennessy 1984; Smith and Pleszkun 1985; Hwu and Patt 1987; Sohi
and Vajapeyam 1987; Hennessy and Patterson 1990; Johnson 1991]. Hence, incorporat-
ing gradual underow into a processor's arithmetic involves engineering tradeo�s that are
becoming increasingly uncomfortable. Recently, some manufacturers have decreed that
subnormal numbers will be supported on their processors only in a \degraded" mode in
which all oating-point arithmetic is executed with less speed [Sites 1993]. In the \fast"
mode, zero is substituted on underow and subnormal inputs are identi�ed with zero. The
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programmer can then choose to pay for gradual underow only when it is needed. But if
the gradual underow mode is too slow, there may never be any advantage to using it.

Ever since its original proposal, gradual underow has been the most contentious feature
of the IEEE Standard [Fraley and Walther 1979; Parlett 1979; Payne 1979; Cody 1981;
Coonen 1981]. Unfortunately, arguments on this subject have rarely been based on solid
information on either side. The merits of gradual underow ought to be weighed against
the costs of implementation, but to date, a careful analysis remains to be done. In the
meantime, a de facto conclusion to the debate may emerge if manufacturers decide to
discard gradual underow due to perceived weakness in demand.

3.5 Alternate number formats

Alternatives to the usual oating-point format have been proposed that provide so much
range as to preclude any possibility of overow or underow. These include the symmetric
level-index representation [Clenshaw and Olver 1984, 1987; Olver 1987; Clenshaw and
Turner 1988; Turner 1989, 1993] and the so-called universal representation of real numbers
[Hamada 1987], along with an older proposal by Matsui and Iri [1981]. Of course, ordinary
oating-point can be given arbitrary range by increasing the size of the exponent �eld
(recall Section 3.1); however, these proposals purport to o�er extraordinary range within
the con�nes of a standard 32- or 64-bit format (corresponding to IEEE Standard single
and double precision, respectively).

This feat is accomplished (as it only could be) by sacri�cing precision for unusually
large or small values. Stated in oating-point terms: as the exponent value grows (positive
or negative), the exponent �eld increases in size, forcing precision to shrink. With many
of these systems, in fact, all precision can ultimately be eliminated (an implied 1 remains),
so that very large or small numbers are represented solely by their exponent value. As
numbers continue to grow (or shrink), the exponent itself becomes more coarse, jumping
to ever larger (or smaller) values!

While such schemes can sometimes be used e�ectively, for most purposes this sliding
precision makes it di�cult to establish much con�dence in the accuracy of a computation
[Demmel 1987]. Since these alternate formats are also no cheaper to implement than
ordinary oating-point augmented with gradual underow, they cannot be considered a
competitive solution to the problem of range violations.

4 POLES

A mathematical function has a pole at a particular argument u if the function's value
becomes arbitrarily large for arguments approaching u. The functions 1=x and log(x) both
have poles at x = 0, while tan(x) has a pole at x = k�=2 for every odd integer k. Clearly,
even with in�nite range, there is no ordinary oating-point number that could be returned
as the correct value of a function at a pole. Consequently, attempting to evaluate a function
at a pole is considered an exception distinct from overow. The division operation provides
the most familiar example of a pole|so much so, in fact, that typically all attempts to
evaluate a function at a pole are placed under the heading of \division by zero."

Although division by zero does not submit to extended range, substitution is sometimes
possible just as for overow. For instance, if x is zero in
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3 +
1

1 +
1

x

; (1)

then 
 can be substituted for 1� x to obtain the correct result of 3 for the expression.
Some machines have an in�nity value, 1, that can be given as the result of a function

at a pole. Adding in�nity to the real numbers is a well-understood mathematical extension
for making poles unexceptional. Arithmetic with in�nity follows a consistent set of rules:
1� a = 1� 0 = 1� a = 1�1 = 1=a = 1=0 = �1 =

p1 = 1, and a=1 =
0=1 = 0, where a is any �nite, nonzero real number. The operations 1�1, 1� 0, and
1=1 are all unde�ned. If the arithmetic of ordinary real numbers is called R, let R1
stand for R extended with in�nity and the rules of arithmetic for in�nity.

By de�ning arithmetic with in�nity as above, the following theorem can be stated:

Theorem 4 If f is a function over R1 of one or more variables, and f is composed of
the basic operations +, �, �, �, and p (along with constants), then

lim
xi!0

all i

f

�
1

x1
; : : : ;

1

xn

�
= f(1; : : : ;1);

provided both sides of the equation are de�ned.

Theorem 4 asserts that for a large class of interesting functions, the result of substituting
1 on all division by zero exceptions (the right side of the equation) is exactly the limit
value one would want (the left side of the equation), so long as the substitution does not
lead to an unde�ned expression. For instance, if 1 is substituted for 1 � x in evaluating
expression (1) above, the value 3 is obtained exactly as a matter of course. Figure 8
illustrates how, in the same way, automatic substitution of in�nity obviates the need for
costly checks for zero denominators in evaluating a continued fraction approximation of a
function.

Extending R to form R1 makes division by zero no longer unde�ned, but in turn
introduces new unde�ned cases 1�1, 1� 0, and 1=1, which include operations +
and � that did not have any before. This is generally considered a good trade, since
the new set of unde�ned cases is in some sense smaller and less troublesome. However,
certain laws that are true for R are not true for R1. For instance, in R, if x+ a = x

then a must be zero. This common-sense fact is an application of the familiar cancellation
law for addition. With R1, however, 1+ a = 1 for all �nite a, not just zero, so the
cancellation law does not always hold in R1. But then again, the cancellation law does
not hold for oating-point arithmetic anyway, since x� a = x whenever jxj � jaj! Luckily,
the identities lost by including in�nity in the arithmetic either already do not apply to
oating-point or have a suitable analog in R1.

So far, a single unsigned in�nity has been considered. With an unsigned in�nity, there
can be no unequivocal answer to the question of whether, say, 10 <1, since if it were
granted that 10 <1, then 10 < 1 = �(1) < �10, which implies that 10 < �10. A
slightly di�erent arithmetic is obtained if R is extended, not with a single unsigned in�nity,
but with two distinct signed in�nities, �1 and +1, with �1 < all �nite numbers < +1.
Signed in�nities can be used to distinguish the limit as numbers grow large in the positive
direction from the limit as numbers grow large in the negative direction. This allows a
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i := n;

restart:

f := a[i];

while i > 0 do

i := i - 1;

d := x + f;

if d = 0 then

i := i - 1;

if 0 <= i then

goto restart;

else

Signal that the result is in�nite;
end if;

end if;

f := a[i] + b[i]/d;

end while;

(a)

i := n;

restart:

f := a[i];

Attempt the following:
while i > 0 do

i := i - 1;

f := a[i] + b[i]/(x + f);

end while;

If a division-by-zero exception occurs:
i := i - 1;

if 0 <= i then

goto restart;

else

Signal that the result is in�nite;
end if;

(b)

f := a[n];

for i := (n - 1) downto 0 do

f := a[i] + b[i]/(x + f);

end for;

(c)

Figure 8: Methods for evaluating a continued fraction approximation to a function without
spurious division-by-zero exceptions. Any function f(x) can be approximated by a so-called
continued fraction expression of the form a0+b0=(x+a1+b1=(x+a2+� � �+bn�1=(x+an) � � �)),
where all the bi are nonzero. (a) Straightforward code that checks for zero denominators.
(b) Code to handle division-by-zero exceptions after-the-fact. (c) Obvious implementation
if b� 0 =1 when b is nonzero.
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distinction to be made, for example, between exp(�1) = 0 and exp(+1) = +1. The
basic arithmetic must also be adjusted, so that (+1) + (+1) = +1, (�1) + (�1) =
�1, (+1)� (�1) = �1, and so on. Addition of in�nities with opposite signs remains
unde�ned.

Unfortunately, signed in�nities introduce some new problems. To begin with, there is
no compelling argument for assigning a particular sign to 1=0, although it does seem less
perverse to choose 1=0 = +1 rather than �1. But if 1=0 = +1, then �1 is the only
x for which 1=(1=x) is nowhere close to x! The solution adopted for the IEEE Standard
is to have a sign on zero as well, so that the reciprocals of +1 and �1 are +0 and
�0, respectively [Coonen 1981; Hough 1981]. Multiplication and division are de�ned to
propagate these signs consistently; so, for example, (+0)� (�3) = �0, (�0) � (�0) = +0,
and (+1)=(�0) = �1.

Though not as contentious as gradual underow, the existence of separate positive and
negative zeros may be the least understood feature of the IEEE Standard. Simply stated,
signed zeros were included to help deal with discontinuities around zero that occur for
many standardized functions [Kahan 1986]. For example, signed zeros make it possible for
the complex elementary functions to obey important laws of symmetry that they otherwise
could not, due to unavoidable discontinuities in the functions' values along the real and
imaginary axes. (This topic is examined in detail by Kahan [1986].) The reciprocal function
1=x likewise has a discontinuity at zero when in�nities are signed, and the sign on zero
selects between a reciprocal of +1 and �1. Related to discontinuities at zero is the fact
that the signs of underowed quantities can be preserved. Signed zeros are also naturally
incorporated within the usual sign-magnitude encoding of oating-point, although that in
itself was not an overriding factor in the decision to include them in the IEEE Standard.

While several problems are solved with signed zeros, a new one arises: Now a sign must
be chosen for the result of x� x! For lack of a better answer, the IEEE Standard assigns
x� x = +0. But consider the function f(x) = 1=(x� a) + 1=(a� x). Algebraically, the
expression de�ning f(x) simpli�es to zero; and not surprisingly, f(x) evaluates to zero for
all �nite x 6= a. Yet if x� x = +0, f(a) jumps suddenly to +1, which is not the result one
might hope for. The crux is that the continuity represented by Theorem 4 is not assured
when zeros and in�nities are signed; the theorem is simply not valid for �0 and �1.
Observe on the other hand that when zeros and in�nities are unsigned, f(a) is unde�ned
because it involves adding 1+1.

Signed zeros can be as much of a nuisance in some circumstances as a convenience
in others. Consequently, if zeros and in�nities have signs, it is best if there is a way to
choose at times to ignore those signs, and instead treat the values as though they were
unsigned [Coonen 1980; Kahan 1986]. At one time, a draft of the IEEE Standard included
separate a�ne and projective modes to allow the programmer to select whether in�nities
and zeros should be treated as signed (a�ne) or unsigned (projective) [Coonen et al. 1979;
Kahan and Palmer 1979; Coonen 1980; Feldman 1981; IEEE 1981]. The projective mode
was ultimately dropped, however, in the interest of reducing the complexity of the �nal
standard.3

Like gradual underow, in�nities and signed zeros obviously require support within the
system to be practical. However, unlike subnormals, relatively little impact is entailed in
extending existing arithmetic hardware to incorporate these few special values.

3A remnant of the projective mode proposal can be found on the Intel 8087 and 80287 oating-point

coprocessors.
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5 INDETERMINATE AND UNDEFINED CASES

In addition to range violations and divisions by zero, a number of indeterminate and
unde�ned cases can arise, such as 0=0 or

p
x with x < 0. Such cases are closely associated

with the notion of singularities, as explained below.
The expression 0=0 is indeterminate because there is no unique quotient q for which

q � 0 = 0; this equation is solved by any �nite number. 0=0 occurs, for example, in the

expression sin(x)=x when x = 0, or in
x+ yp
x2 + y2

when x = y = 0. For each of these

expressions, the fact that 0=0 can arise is cause for the existence of a singularity in the
expression. An expression can be said to contain a singularity if it cannot be evaluated
or is discontinuous at some combination of arguments and yet is de�ned and continuous
for arguments arbitrarily close to those that cause a problem. The expression sin(x)=x,
for instance, is well-behaved for arbitrarily small x (both positive and negative), yet is
indeterminate for x = 0. (Actually, most mathematicians would de�ne the concept of
singularity a bit di�erently. Nevertheless, the de�nition given here will su�ce as a rough
approximation. The function sin(x)=x has a singularity at x = 0 regardless [Apostol 1974].)

The singularity at x = 0 in sin(x)=x is called removable because limx!0 sin(x)=x is
de�ned|it is equal to 1. Intuitively, y = sin(x)=x has a smooth curve (x; y) everywhere
except at x = 0, where there is a small break in the curve because of the indeterminate
expression 0=0. Filling in the break with the point (0; 1) gives a curve that is smooth
everywhere|one that is exactly like the original curve, except with the singularity (the
hole) removed. The function

f(x) =

�
sin(x)=x if x 6= 0;
1 if x = 0;

is important in signal processing, and is known as the sinc function. There is no convenient
expression for this function that does not also exhibit a removable singularity.

Not all singularities are removable. The singularity in the second example above is not
removable because

lim
x!0
y!0

x+ yp
x2 + y2

is again indeterminate. (Mathematically speaking, the value depends on which direction
the limit is approached.) As a rule, singularities involving only a single variable are often
removable, whereas those involving two or more variables tend not to be removable. But
counterexamples exist to both these tendencies.

Other unde�ned cases can arise that are not associated with indeterminate expressions
but are more fundamental. Examples include the square root or logarithm of a negative
number, or the arcsine of a value with magnitude greater than 1. For these, there is no
possible correct result|such as there is no real number z for which z2 = x or ez = x if x
is negative. If 1 is not available, 1=0 is another example of an unde�ned case.

When indeterminate or other unde�ned cases occur during program execution, they
ordinarily result in the signalling of an exception, either by a processor trap or through some
other means such as the IEEE Standard invalid exception ag. If an indeterminate case
represents a removable singularity, or otherwise if a correct substitute can be determined by
context, it is obviously only necessary to substitute the proper value in order to continue.
Whether these cases call for any special exception handling support is debatable. If an
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indeterminate case is anticipated, it is usually an easy matter to test for the case in advance
and thus prevent an exception from ever occurring in the �rst place. For instance, the sinc
function de�ned above is easily coded without exception as

if x = 0 then

sinc := 1;

else

sinc := sin(x)/x;

On the other hand, the test for zero is redundant if the hardware performs the same check.
If an exception mechanism exists that allows the explicit test to be omitted, the normal
case may be sped up somewhat. (At least one scheme for achieving this is advocated by
Kahan [Sterbenz 1974; Goldberg 1991].)

Before concluding, it would be well to say a few words about the value of 00. One
common opinion holds that 00 must be indeterminate because limx;y!0 x

y can be any
arbitrary value (again depending on the direction in which the limit is approached). While
this stance is not wholy unreasonable, it does have some unfortunate consequences. For
example, if 00 is unde�ned, then the expression of a polynomial as

Pn

i=0 aix
i is not valid

for x = 0! This one special case can be avoided only by assuming 00 = 1. Or consider the
standard binomial theorem: (x+ y)n =

Pn
i=0

�
n
i

�
xiyn�i. If 00 is unde�ned, this theorem

is valid for all real numbers x and y and all nonnegative integers n, except if one of x or y
is zero, or if n = 0 and y = �x. If 00 is accepted as 1, the binomial theorem is true for all
nonnegative integers n without exception.

Knuth argues that, if for no better reason, 00 ought to be identi�ed with 1 simply for
mathematical conciseness, so that these sorts of exceptional cases can be avoided [Knuth
1992]. Ultimately, such an argument rests on the fundamental de�nition of xn when n is
an integer: Given that xn is the product of n numbers all having the value x, x0 is by
de�nition the product of zero numbers, which ought to be 1 regardless of x. The value of
x in x0 is simply irrelevant! The fact that limx;y!0 x

y is indeterminate only proves that
the xy function must be discontinuous at x = y = 0; it does not prevent 00 from having a
de�ned value.4 Kahan [1986] goes further and gives practical justi�cation for 00 = 1 with
an analysis of the circumstances in which 00 is likely to arise in a computation.

Thus, 00 is an example of an expression that is best not unde�ned, in order that
programs not have to check for it as a special case. Subsequent claims can also be made
for 10 = 1

p
0 = 1

p1 = 1 and log01 = log
1
1 = 0.

6 CONCLUSIONS

This paper has presented the most common techniques used to handle oating-point ex-
ceptions in numeric code. Exception handling is not a necessary feature; in every instance,
a solution can be coded that avoids any occurence of an exception. But standardized
support for exception handling allows many numeric routines to be better optimized. In-
stead of defensive code that evades exceptions, a faster, \o�ensive" style can be used in
which exceptional cases are dealt with only if they actually arise [Parlett 1979; Demmel

4A critic might note that essentially the same argument for multiplication gives 0�1 = 0. However, in
this case the conclusionmust be rejected because it leads to a contradiction: 0 = 0�1 = (1=1)� (1=0) =
1=(0�1) = 1=0 = 1. The contradiction arises only because1 is by de�nition a value such that 0�1
is not necessarily 0. No such contradiction arises in de�ning 00 = 1.
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and Li 1993]. In addition, some exception handling can be automated if techniques like
substitution and gradual underow are supported by the system.

The most basic programming tool needed for handling oating-point exceptions is a
source language construct of the form

Attempt the following:
Perform some calculation;

If one or more out of a speci�ed set of exceptions occurs:
Perform an alternate calculation;

Precise termination within the �rst attempted calculation is not crucial, although imprecise
termination requires more care by the programmer to ensure that the �rst attempt will
not do something dangerous if an exception occurs. The most signi�cant uses of such a
construct would be for optimizing scaling and extended range calculations. In these cases,
the exceptions of interest are range violations, so it must be possible to catch underows
as well as overows with this construct. More and more languages are being out�tted with
a termination exception mechanism that follows this form, but detection of underows is
usually precluded, and some languages like Ada do not allow overows to be distinguished
from other arithmetic exceptions.

Obviously, it would hardly be an advance if every oating-point underow had to be
handled through the construct above. Hence there needs to be a way for the programmer to
select whether underows will be automatically handled or whether they should be caught
and some alternate code executed [Hull 1981]. Likewise, it is convenient to be able to
choose to have overows substituted with 
, or with 1 if it exists.

Although not ideal, the IEEE Standard takes a compromise position, performing default
substitutions on exceptions, but also raising exception ags that can later be tested to select
an alternate computation. This scheme obviates any need to preselect whether underows
and overows should be either substituted for or trapped. In exchange, it does demand yet
more care from the programmer to guarantee that program execution progresses properly in
the face of exceptions. Since considerable hardware support for the IEEE Standard already
exists, providing standardized functions for accessing these exception ags would be the
quickest path to more intelligent handling of arithmetic exceptions in portable source-level
programs.

Instead of forcing the programmer to manipulate the ags directly, one might imagine
instead a more convenient language construct along the same lines as above, but based
operationally on the setting and testing of the IEEE Standard exception ags rather than
on problematic processor traps. Hull et al. [1994] make essentially the same observation,
and propose an enable-handle construct:

enable

Perform some calculation;
handle

Perform an alternate calculation (if an exception occurs);
end

The alternate code is executed if a range violation or \unde�ned" exception occurs during
the �rst attempt. Hull et al. de�ne their construct speci�cally to give no assurance at all as
to how long execution of the �rst attempt might continue after an exception: An exception
might cause the \enable" part to be aborted immediately, or it might raise an internal
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ag that is tested at completion of the attempt. (Or anything conceivably in between.)
Hull et al. also choose not to inform the handler which exception led to its being invoked.
Rather, the alternate code must start over again from scratch in all cases. Although Hull
et al. make certain choices that may not su�ce generally, their enable-handle construct
illustrates how a programming language might be extended to make ag manipulation
better structured.

To keep division-by-zero exceptions from being a nuisance, continued support for in�nity
arithmetic as de�ned by the IEEE Standard is a necessity. Modi�cation to restore a�ne
versus projective mode would be a plus, particularly since the missing projective mode is
actually the safer mode [Kahan and Palmer 1979; Coonen 1980; Hough 1981]. This would
imply, of course, a mechanism for somehow choosing between the two from a high-level
language.

Continued support for gradual underow is more questionable. However, gradual un-
derow performs a greater service than is generally realized and probably deserves to be
maintained. Some techniques for reducing the cost of gradual underow appear to have
never been published, so it may be that implementation di�culties have been at least par-
tially overstated.5 On the other hand, if a faster zero-substitution mode can be made to
coexist, there is no reason not to provide it. Again, a mechanism for choosing between the
two modes from a high-level language must be part of any such alternative.

It would be impossible to over-stress the importance of high-level standardization for
any exception-handling support. Features implemented with a di�erent interface on each
system are unlikely to be used, regardless of their intrinsic value to numeric algorithms
people care about. The watchword among implementors of numeric libraries is nearly
always portability. Only if systems pay attention to portability will hardware that is nearly
ubiquitous today actually begin to exist for the people for whom it was intended.

APPENDIX

Three of the theorems in the paper are proved in this appendix. References are provided
for the fourth.

Theorem 1 If x and y are oating-point numbers, and if x�y underows to a subnormal
number, then x� y = x+ y exactly.

Actually, a slightly stronger statement can be made:

Theorem 1a If x and y are oating-point numbers and jx+ yj < 2!, then x� y = x+ y

exactly.

Proof The smallest positive subnormal number is 2�!, and every �nite oating-point
number|positive or negative, normal or subnormal|is an integer multiple of 2�!. (Refer
back to Figures 6 and 7. Most oating-point numbers are very large multiples of this value.)
Hence, x and y are each integer multiples of 2�!, and consequently their real sum x+ y is
also an integer multiple of 2�!. But since jx+ yj < 2!, x+ y is representable exactly, either
as a normal oating-point number with minimum exponent, or as a subnormal number.
(Refer to Figures 6 and 7 again.) Thus x� y = x+ y exactly. []

5Unfortunately, this topic is outside the scope of this paper. The extent to which such techniques are
known commercially is di�cult to gauge.
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Theorem 2 If x and y are any oating-point numbers with 1

2
� x=y � 2, then x	y = x�y

exactly.

Proof Theorem 1 proves the case in which x 	 y underows. Otherwise, assume without
loss of generality that x and y are both positive, and that x � y. (Clearly x and y are
required to have the same sign, and the theorem is not a�ected by whether that sign is
positive or negative. Likewise, the theorem is symmetric with respect to x and y, so if
x < y simply swap the two.)

Given that y is a oating-point number of n binary digits, y can be expressed as b � 2e
for some integers b and e with 2n�1 � b < 2n. Since x � y, x = a � 2e for some integer
a and the same exponent e. From the theorem statement together with the assumption
that x � y, we know that y � x � 2y, so 0 � x� y � y. Substituting, it follows that
0 � (a � b) � 2e � b � 2e, so 0 � a� b � b. Since b < 2n, we have 0 � a � b < 2n.
Hence, x� y = (a � b) � 2e is representable exactly as a oating-point number, and thus
x	 y = x� y. []

Theorem 3 If u, x, and y are oating-point numbers, and if u is normal (nonzero, non-
subnormal) and any underows are gradual, then

u� (x
 y) = (u+ (xy � �)) � �

with
1� 2�

1� �
� � � 1

1� �
and 1� 3

2
� < � <

1

1� 3

2
�
.

Proof If neither the multiplication nor the addition underows, the theorem is trivial. If
the multiplication does not underow but the addition does, by Theorem 1 the addition
is exact, so set � = 1 and again the theorem is trivial. It remains to prove the theorem
when x
 y underows. De�ne the absolute error of the multiplication � = (x
 y) � xy,
so x
 y = xy + �. Since jxyj < !, we know j�j � �!. (Observe Figures 6 and 7.) From
the theorem statement, we have that juj � !. The remainder of the proof is divided into
three cases:

Case 2! � ju+ (x 
 y)j: De�ne � = (u� (x
 y))=(u + (x
 y)). Since � is the pertur-
bation factor of a oating-point addition that does not underow, 1� � � � � 1 + �. Set
� = 1, and set

� =
�

1� �

u+ (x 
 y)

:

Then

(u+ xy�)� = (u+ xy)
�

1� �

u+ (x
 y)

= (u+ xy)

u� (x
 y)

u+ (x
 y)

1� �

u+ (x
 y)

= (u+ xy)
u� (x 
 y)

u+ (x
 y) � �
= (u+ xy)

u� (x
 y)

u+ xy

= u� (x 
 y);
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as required. Furthermore, since���� �

u+ (x
 y)

���� � �!

2!
= 1

2
�;

it follows that (1� �)=(1 + 1

2
�) � � � (1 + �)=(1� 1

2
�). It is a simple matter to show that

these bounds satisfy the necessary constraints on �.

Case ju+ (x 
 y)j < 2! and (1� �)! � jxyj < !: Set � = 1 + �=xy, and set � = 1.
Then (u+ xy�)� = u+ xy(1 + �=xy) = u+ xy + � = u+ (x
 y), which by Theorem 1a
is exactly u� (x
 y). And since���� �xy

���� � �!

(1� �)!
=

�

1� �
;

we have that (1� 2�)=(1� �) � � � 1=(1� �).

Case ju+ (x
 y)j < 2! and jxyj < (1� �)!: De�ne k = jxyj=(1� �)!, so jxyj =
k(1� �)! with 0 � k < 1. Set � = 1 + k�=xy and � = 1 + (1� k)�=(u+ xy + k�). Then

(u+ xy�)� =

�
u+ xy

�
1 +

k�

xy

���
1 +

(1� k)�

u+ xy + k�

�

= (u+ xy + k�)

�
1 +

(1� k)�

u+ xy + k�

�

= (u+ xy + �) = u+ (x
 y);

which again by Theorem 1a is u� (x 
 y). Moreover,����k�xy
���� =

j�j
(1� �)!

� �

1� �
;

which once again implies (1� 2�)=(1� �) � � � 1=(1� �). To check the bounds on �,
�rst observe that jxyj+ jk�j � k(1� �)! + k�! = k! < ! � juj, and so ju+ xy + k�j �
juj � jxyj � jk�j � ! � k(1� �)! � k�! = (1 � k)!. Consequently,���� (1� k)�

u+ xy + k�

���� � (1� k)�!

(1� k)!
= �;

from which it follows that 1� � � � � 1 + �. []

Theorem 4 If f is a function over R1 of one or more variables, and f is composed of
the basic operations +, �, �, �, and p (along with constants), then

lim
xi!0

all i

f

�
1

x1
; : : : ;

1

xn

�
= f(1; : : : ;1);

provided both sides of the equation are de�ned.
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This theorem is equivalent to saying that the basic operations inR1 preserve continuity
around in�nity, a fact that is easily established using standard techniques of analysis but
will not be proved here [Apostol 1974]. A nearly identical theorem for the extended complex
domain is traditionally proved in analysis textbooks, and a proof for the extended reals as
above can be constructed along the same lines.

(For reasons hinted at earlier, analysis textbooks usually extend the real domain with
separate positive and negative in�nities. However, this extension does not allow for a
unique reciprocal for 0 without signed zeros. As signed zeros in the IEEE Standard have
been called an \abomination" by at least one mathematician [Baker 1992], 1=0 typically
remains unde�ned in real analysis.)
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